120 research outputs found

    Building detection in very high resolution multispectral data with deep learning features

    Get PDF
    International audienceThe automated man-made object detection and building extraction from single satellite images is, still, one of the most challenging tasks for various urban planning and monitoring engineering applications. To this end, in this paper we propose an automated building detection framework from very high resolution remote sensing data based on deep convolu-tional neural networks. The core of the developed method is based on a supervised classification procedure employing a very large training dataset. An MRF model is then responsible for obtaining the optimal labels regarding the detection of scene buildings. The experimental results and the performed quantitative validation indicate the quite promising potentials of the developed approach

    Multi-center anatomical segmentation with heterogeneous labels via landmark-based models

    Full text link
    Learning anatomical segmentation from heterogeneous labels in multi-center datasets is a common situation encountered in clinical scenarios, where certain anatomical structures are only annotated in images coming from particular medical centers, but not in the full database. Here we first show how state-of-the-art pixel-level segmentation models fail in naively learning this task due to domain memorization issues and conflicting labels. We then propose to adopt HybridGNet, a landmark-based segmentation model which learns the available anatomical structures using graph-based representations. By analyzing the latent space learned by both models, we show that HybridGNet naturally learns more domain-invariant feature representations, and provide empirical evidence in the context of chest X-ray multiclass segmentation. We hope these insights will shed light on the training of deep learning models with heterogeneous labels from public and multi-center datasets

    Structured State Space Models for Multiple Instance Learning in Digital Pathology

    Full text link
    Multiple instance learning is an ideal mode of analysis for histopathology data, where vast whole slide images are typically annotated with a single global label. In such cases, a whole slide image is modelled as a collection of tissue patches to be aggregated and classified. Common models for performing this classification include recurrent neural networks and transformers. Although powerful compression algorithms, such as deep pre-trained neural networks, are used to reduce the dimensionality of each patch, the sequences arising from whole slide images remain excessively long, routinely containing tens of thousands of patches. Structured state space models are an emerging alternative for sequence modelling, specifically designed for the efficient modelling of long sequences. These models invoke an optimal projection of an input sequence into memory units that compress the entire sequence. In this paper, we propose the use of state space models as a multiple instance learner to a variety of problems in digital pathology. Across experiments in metastasis detection, cancer subtyping, mutation classification, and multitask learning, we demonstrate the competitiveness of this new class of models with existing state of the art approaches. Our code is available at https://github.com/MICS-Lab/s4_digital_pathology

    On the detection of Out-Of-Distribution samples in Multiple Instance Learning

    Full text link
    The deployment of machine learning solutions in real-world scenarios often involves addressing the challenge of out-of-distribution (OOD) detection. While significant efforts have been devoted to OOD detection in classical supervised settings, the context of weakly supervised learning, particularly the Multiple Instance Learning (MIL) framework, remains under-explored. In this study, we tackle this challenge by adapting post-hoc OOD detection methods to the MIL setting while introducing a novel benchmark specifically designed to assess OOD detection performance in weakly supervised scenarios. Extensive experiments based on diverse public datasets do not reveal a single method with a clear advantage over the others. Although DICE emerges as the best-performing method overall, it exhibits significant shortcomings on some datasets, emphasizing the complexity of this under-explored and challenging topic. Our findings shed light on the complex nature of OOD detection under the MIL framework, emphasizing the importance of developing novel, robust, and reliable methods that can generalize effectively in a weakly supervised context. The code for the paper is available here: https://github.com/loic-lb/OOD_MIL

    Learn2Reg: comprehensive multi-task medical image registration challenge, dataset and evaluation in the era of deep learning

    Get PDF
    Image registration is a fundamental medical image analysis task, and a wide variety of approaches have been proposed. However, only a few studies have comprehensively compared medical image registration approaches on a wide range of clinically relevant tasks. This limits the development of registration methods, the adoption of research advances into practice, and a fair benchmark across competing approaches. The Learn2Reg challenge addresses these limitations by providing a multi-task medical image registration data set for comprehensive characterisation of deformable registration algorithms. A continuous evaluation will be possible at https://learn2reg.grand-challenge.org. Learn2Reg covers a wide range of anatomies (brain, abdomen, and thorax), modalities (ultrasound, CT, MR), availability of annotations, as well as intra- and inter-patient registration evaluation. We established an easily accessible framework for training and validation of 3D registration methods, which enabled the compilation of results of over 65 individual method submissions from more than 20 unique teams. We used a complementary set of metrics, including robustness, accuracy, plausibility, and runtime, enabling unique insight into the current state-of-the-art of medical image registration. This paper describes datasets, tasks, evaluation methods and results of the challenge, as well as results of further analysis of transferability to new datasets, the importance of label supervision, and resulting bias. While no single approach worked best across all tasks, many methodological aspects could be identified that push the performance of medical image registration to new state-of-the-art performance. Furthermore, we demystified the common belief that conventional registration methods have to be much slower than deep-learning-based methods

    Automatic Descriptor-Based Co-Registration of Frame Hyperspectral Data

    No full text
    Frame hyperspectral sensors, in contrast to push-broom or line-scanning ones, produce hyperspectral datasets with, in general, better geometry but with unregistered spectral bands. Being acquired at different instances and due to platform motion and movements (UAVs, aircrafts, etc.), every spectral band is displaced and acquired with a different geometry. The automatic and accurate registration of hyperspectral datasets from frame sensors remains a challenge. Powerful local feature descriptors when computed over the spectrum fail to extract enough correspondences and successfully complete the registration procedure. To this end, we propose a generic and automated framework which decomposes the problem and enables the efficient computation of a sufficient amount of accurate correspondences over the given spectrum, without using any ancillary data (e.g., from GPS/IMU). First, the spectral bands are divided in spectral groups according to their wavelength. The spectral borders of each group are not strict and their formulation allows certain overlaps. The spectral variance and proximity determine the applicability of every spectral band to act as a reference during the registration procedure. The proposed decomposition allows the descriptor and the robust estimation process to deliver numerous inliers. The search space of possible solutions has been effectively narrowed by sorting and selecting the optimal spectral bands which under an unsupervised manner can quickly recover hypercube’s geometry. The developed approach has been qualitatively and quantitatively evaluated with six different datasets obtained by frame sensors onboard aerial platforms and UAVs. Experimental results appear promising

    Automatic Descriptor-Based Co-Registration of Frame Hyperspectral Data

    No full text
    Frame hyperspectral sensors, in contrast to push-broom or line-scanning ones, produce hyperspectral datasets with, in general, better geometry but with unregistered spectral bands. Being acquired at different instances and due to platform motion and movements (UAVs, aircrafts, etc.), every spectral band is displaced and acquired with a different geometry. The automatic and accurate registration of hyperspectral datasets from frame sensors remains a challenge. Powerful local feature descriptors when computed over the spectrum fail to extract enough correspondences and successfully complete the registration procedure. To this end, we propose a generic and automated framework which decomposes the problem and enables the efficient computation of a sufficient amount of accurate correspondences over the given spectrum, without using any ancillary data (e.g., from GPS/IMU). First, the spectral bands are divided in spectral groups according to their wavelength. The spectral borders of each group are not strict and their formulation allows certain overlaps. The spectral variance and proximity determine the applicability of every spectral band to act as a reference during the registration procedure. The proposed decomposition allows the descriptor and the robust estimation process to deliver numerous inliers. The search space of possible solutions has been effectively narrowed by sorting and selecting the optimal spectral bands which under an unsupervised manner can quickly recover hypercube’s geometry. The developed approach has been qualitatively and quantitatively evaluated with six different datasets obtained by frame sensors onboard aerial platforms and UAVs. Experimental results appear promising

    A Novel Object-Based Deep Learning Framework for Semantic Segmentation of Very High-Resolution Remote Sensing Data: Comparison with Convolutional and Fully Convolutional Networks

    No full text
    International audienceDeep learning architectures have received much attention in recent years demonstrating state-of-the-art performance in several segmentation, classification and other computer vision tasks. Most of these deep networks are based on either convolutional or fully convolutional architectures. In this paper, we propose a novel object-based deep-learning framework for semantic segmentation in very high-resolution satellite data. In particular, we exploit object-based priors integrated into a fully convolutional neural network by incorporating an anisotropic diffusion data preprocessing step and an additional loss term during the training process. Under this constrained framework, the goal is to enforce pixels that belong to the same object to be classified at the same semantic category. We compared thoroughly the novel object-based framework with the currently dominating convolutional and fully convolutional deep networks. In particular, numerous experiments were conducted on the publicly available ISPRS WGII/4 benchmark datasets, namely Vaihingen and Potsdam, for validation and inter-comparison based on a variety of metrics. Quantitatively, experimental results indicate that, overall, the proposed object-based framework slightly outperformed the current state-of-the-art fully convolutional networks by more than 1% in terms of overall accuracy, while intersection over union results are improved for all semantic categories. Qualitatively, man-made classes with more strict geometry such as buildings were the ones that benefit most from our method, especially along object boundaries, highlighting the great potential of the developed approach
    corecore